解读Python内存管理机制

作者: 空气 分类: Python, 转载收藏 发布时间: 2013-02-16 19:49 ė1218 6没有评论

内存管理,对于Python这样的动态语言,是至关重要的一部分,它在很大程度上甚至决定了Python的执行效率,因为在Python的运行中,会创建和销毁大量的对象,这些都涉及到内存的管理。
原文链接 http://developer.51cto.com/art/201007/213585.htm

内存管理,对于Python这样的动态语言,是至关重要的一部分,它在很大程度上甚至决定了Python的执行效率,因为在Python的运行中,会创建和销毁大量的对象,这些都涉及到内存的管理。

小块空间的内存池

在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。

0958450
Python内存池全景

这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。这也就是之前提到的Pymalloc机制。

在Python 2.5中,Python内部默认的小块内存与大块内存的分界点定在256个字节,这个分界点由前面我们看到的名为SMALL_REQUEST_THRESHOLD的符号控制。

也就是说,当申请的内存小于256字节时,PyObject_Malloc会在内存池中申请内存;当申请的内存大于256字节时,PyObject_Malloc的行为将蜕化为malloc的行为。当然,通过修改Python源代码,我们可以改变这个默认值,从而改变Python的默认内存管理行为。

在一个对象的引用计数减为0时,与该对象对应的析构函数就会被调用。

但是要特别注意的是,调用析构函数并不意味着最终一定会调用free释放内存空间,如果真是这样的话,那频繁地申请、释放内存空间会使 Python的执行效率大打折扣(更何况Python已经多年背负了人们对其执行效率的不满)。一般来说,Python中大量采用了内存对象池的技术,使用这种技术可以避免频繁地申请和释放内存空间。因此在析构时,通常都是将对象占用的空间归还到内存池中。

“这个问题就是:Python的arena从来不释放pool。这个问题为什么会引起类似于内存泄漏的现象呢。考虑这样一种情形,申请10*1024*1024个16字节的小内存,这就意味着必须使用160M的内存,由于Python没有默认将前面提到的限制内存池的WITH_MEMORY_LIMITS编译符号打开,所以Python会完全使用arena来满足你的需求,这都没有问题,关键的问题在于过了一段时间,你将所有这些16字节的内存都释放了,这些内存都回到arena的控制中,似乎没有问题。

但是问题恰恰就在这时出现了。因为arena始终不会释放它维护的pool集合,所以这160M的内存始终被Python占用,如果以后程序运行中再也不需要160M如此巨大的内存,这点内存岂不是就浪费了?”

Python内存管理规则:del的时候,把list的元素释放掉,把管理元素的大对象回收到py对象缓冲池里。

分享此文到:

本文出自 空气的时光记事本,非注明转载皆为原创,转载时请注明出处及相应链接。

本文永久链接: http://www.liujingze.com/%e8%a7%a3%e8%af%bbpython%e5%86%85%e5%ad%98%e7%ae%a1%e7%90%86%e6%9c%ba%e5%88%b6.html

0

发表评论

电子邮件地址不会被公开。 必填项已用*标注

*